Rabu, 06 Maret 2013

Kalau dilihat dalam kamus bahasa, maka kita akan menemukan istilah “buraq” yang diartikan sebagai “Binatang kendaraan Nabi Muhammad Saw”, dia berbentuk kuda bersayap kiri kanan. Dalam pemakaian umum “buraq” itu berarti burung cendrawasih yang oleh kamus diartikan dengan burung dari sorga (bird of paradise). Sebenarnya “buraq” itu adalah istilah yang dipakai dalam AlQur’an dengan arti “kilat” termuat pada ayat 2/19, 2/20 dan 13/2 dengan istilah aslinya “Barqu”. Para sarjana telah melakukan penyelidikan dan berkesimpulan bahwa kilat atau sinar bergerak sejauh 186.000 mil atau 300 Kilometer perdetik. Dengan penyelidikan yang memakai sistem paralax, diketahui pula jarak matahari dari bumi sekitar 93.000.000 mil dan dilintasi oleh sinar dalam waktu 8 menit.

Jarak sedemikian besar disebut 1 AU atau satu Astronomical Unit, dipakai sebagai ukuran terkecil dalam menentukan jarak antar benda angkasa. Dan kita sudah membahas bahwa Muntaha itu letaknya diluar sistem galaksi bimasakti kita, dimana jarak dari satu galaksi menuju kegalaksi lainnya saja sekitar 170.000 tahun cahaya. Sedangkan Muntaha itu sendiri merupakan bumi atau planet yang berada dalam galaksi terjauh dari semua galaksi yang ada diruang angkasa.
Amatlah janggal jika kita mengatakan bahwa buraq tersebut dipahami sebagai binatang atau kuda bersayap yang dapat terbang keangkasa bebas. Orang tentu dapat mengetahui bahwa sayap hanya dapat berfungsi dalam lingkungan atmosfir planet dimana udara ditunda kebelakang untuk gerak maju kemuka atau ditekan kebawah untuk melambung keatas.

Udara begitu hanya berada dalam troposfir yang tingginya 6 hingga 16 Km dari permukaan bumi, padahal buraq itu harus menempuh perjalanan menembusi luar angkasa yang hampa udara dimana sayap tak berguna malah menjadi beban. Dengan kecepatan kilat maka binatang kendaraan itu, begitu juga Nabi yang menaiki, akan terbakar dalam daerah atmosfir bumi, sebaliknya ketiadaan udara untuk bernafas dalam menempuh jarak yang sangat jauh sementara itu harus mengelakkan diri dari meteorities yang berlayangan diangkasa bebas.

Semua itu membuktikan bahwa Nabi Muhammad Saw bukanlah melakukan perjalanan mi’rajnya dengan menggunakan binatang ataupun hewan bersayap sebagaimana yang diyakini oleh orang selama ini.
Penggantian istilah dari Barqu yang berarti kilat menjadi buraq jelas mengandung pengertian yang berbeda, dimana jika Barqu itu adalah kilat, maka buraq saya asumsikan sebagai sesuatu kendaraan yang mempunyai sifat dan kecepatannya diatas kilat atau sesuatu yang kecepatannya melebihi gerakan sinar.
Menurut akal pikiran kita sehari-hari yang tetap tinggal dibumi, jarak yang demikian jauhnya tidak mungkin dapat dicapai hanya dalam beberapa saat saja.
Untuk menerobos garis tengah jagat raya saja memerlukan waktu 10 milyard tahun cahaya melalui galaksi-galaksi yang oleh Garnow disebut sebagai fosil-fosil jagad raya dan selanjutnya menuju alam yang sulit digambarkan jauhnya oleh akal pikiran dan panca indera manusia dengan segala macam peralatannya, karena belum atau bahkan tidak diketahui oleh para Astronomi, galaksi yang lebih jauh dari 20 bilyun tahun cahaya.
Dengan kata lain mereka para Astronom tidak dapat melihat apa yang ada dibalik galaksi sejauh itu karena keadaannya benar-benar gelap mutlak.

Untuk mencapai jarak yang demikian jauhnya tentu diperlukan penambahan kecepatan yang berlipat kali kecepatan cahaya. Sayangnya kecepatan cahaya merupakan kecepatan yang tertinggi yang diketahui oleh manusia sampai hari ini atau bisa jadi karena parameter kecepatan cahaya belum terjangkau oleh manusia.
Dalam AlQur’an kita jumpai betapa hitungan waktu yang diperlukan oleh para malaikat dan ruh-ruh orang yang meninggal kembali kepada Tuhan: Naik malaikat-malaikat dan ruh-ruh kepadaNya dalam sehari yang kadarnya limapuluh ribu tahun. (QS. 70:4)
Ukuran waktu dalam ayat diatas ada para ahli yang menyebut bahwa angka 50 ribu tahun itu menunjukkan betapa lamanya waktu yang diperlukan penerbangan malaikat dan Ar-Ruh untuk sampai kepada Tuhan.

Namun bagaimanapun juga ayat itu menunjukkan adanya perbedaan waktu yang cukup besar antara waktu kita yang tetap dibumi dengan waktu malaikat yang bergerak cepat sesuai dengan pendapat para ahli fisika yang menyebutkan “Time for a person on earth and time for a person in hight speed rocket are not the same”, waktu bagi seseorang yang berada dibumi berbeda dengan waktu bagi orang yang ada dalam pesawat yang berkecepatan tinggi.

Perbedaan waktu yang disebut dalam ayat diatas dinyatakan dengan angka satu hari malaikat berbanding 50.000 tahun waktu bumi, perbedaan ini tidak ubahnya dengan perbedaan waktu bumi dan waktu elektron, dimana satu detik bumi sama dengan 1.000 juta tahun elektron atau 1 tahun Bima Sakti = 225 juta tahun waktu sistem solar.
Jadi bila malaikat berangkat jam 18:00 dan kembali pada jam 06.00 pagi waktu malaikat, maka menurut perhitungan waktu dibumi sehari malaikat = 50.000 tahun waktu bumi. Dan untuk jarak radius alam semesta hingga sampai ke Muntaha dan melewati angkasa raya yang disebut sebagai ‘Arsy Ilahi, 10 Milyard tahun cahaya diperlukan waktu kurang lebih 548 tahun waktu malaikat.
Namun malaikat Jibril kenyataannya dalam peristiwa Mi’raj Nabi Muhammad Saw itu hanya menghabiskan waktu 1/2 hari waktu bumi /maksimum 12 Jam/ atau = 1/100.000 tahun Jibril.
Kejadian ini nampaknya begitu aneh dan bahkan tidak mungkin menurut pengetahuan peradaban manusia saat ini, tetapi para ilmuwan mempunyai pandangan lain, suatu contoh apa yang dikemukakan oleh Garnow dalam bukunya Physies Foundations and Frontier antara lain disebutkan bahwa jika pesawat ruang angkasa dapat terbang dengan kecepatan tetap /cahaya/ menuju kepusat sistem galaksi Bima Sakti, ia akan kembali setelah menghabiskan waktu 40.000 tahun menurut kalender bumi.
Tetapi menurut sipengendara pesawat /pilot/ penerbangan itu hanya menghabiskan waktu 30 tahun saja. Perbedaan tampak begitu besar lebih dari 1.000 kalinya.
Contoh lain yang cukup populer, yaitu paradoks anak kembar, ialah seorang pilot kapal ruang angkasa yang mempunyai saudara kembar dibumi, dia berangkat umpamanya pada usia 0 tahun menuju sebuah bintang yang jaraknya dari bumi sejauh 25 tahun cahaya.
Setelah 50 tahun kemudian sipilot tadi kembali kebumi ternyata bahwa saudaranya yang tetap dibumi berusia 49 tahun lebih tua, sedangkan sipilot baru berusia 1 tahun saja. Atau penerbangan yang seharusnya menurut ukuran bumi selama 50 tahun cahaya pulang pergi dirasakan oleh pilot hanya dalam waktu selama 1 tahun saja.

Dari contoh-contoh diatas menunjukkan bahwa jarak atau waktu menjadi semakin mengkerut atau menyusut bila dilalui oleh kecepatan tinggi diatas yang menyamai kecepatan cahaya.
Kembali pada peristiwa Mi’raj Rasulullah bahwa jarak yang ditempuh oleh Malaikat Jibril bersama Nabi Muhammad dengan Buraq menurut ukuran dibumi sejauh radius jagad raya ditambah jarak Sidratul Muntaha pulang pergi ditempuh dalam waktu maksimal 1/2 hari waktu bumi (semalam) atau 1/100.000 waktu Jibril atau sama dengan 10-5 tahun cahaya, yaitu kira-kira sama dengan 9,46 X 10 -23 cm/detik dirasakan oleh Jibril bersama Nabi Muhammad (bandingkan dengan radius sebuah elektron dengan 3 X 19-11 cm) atau kira-kira lebih pendek dari panjang gelombang sinar gamma.
Nah, Barkah yang disebut dalam Qur’an yang melingkupi diri Nabi Muhammad Saw adalah berupa penjagaan total yang melindungi beliau dari berbagai bahaya yang dapat timbul baik selama perjalanan dari bumi atau juga selama dalam perjalanan diruang angkasa, termasuk pencukupan udara bagi pernafasan Rasulullah Saw selama itu dan lain sebagainya.

Jadi, sekarang kita bisa mendeskripsikan tentang kendaraan bernama Buraq ini sedemikian rupa, apakah dia berupa sebuah pesawat ruang angkasa yang memiliki kecepatan diatas kecepatan sinar dan kecepatan UFO ? Ataukah dia berupa kekuatan yang diberikan Allah kepada diri Rasulullah Saw sehingga Rasul dapat terbang diruang angkasa dengan selamat dan sejahtera, bebas melayang seperti seorang Superman?
Sebagai suatu wahana yang sanggup membungkus dan melindungi jasad Rasulullah sedemikian rupa sehingga sanggup melawan/mengatasi hukum alam dalam hal perjalanan dimensi. Sekaligus didalamnya tersedia cukup udara untuk pernafasan Nabi Muhammad Saw dan penuh dengan monitor-monitor yang memungkinkan Nabi untuk melihat keluar ataupun juga monitor-monitor yang bersifat “Futuristik” , yaitu monitor yang memberikan gambaran kepada Rasulullah mengenai keadaan umatnya sepeninggal beliau nantinya.
Bukankah ada banyak juga hadist shahih yang mengatakan bahwa selama perjalanan menuju ke Muntaha itu Nabi Muhammad Saw telah diperlihatkan pemandangan- pemandangan yang luar biasa? Apakah aneh bagi Anda jika Nabi Muhammad Saw telah diperlihatkan oleh Allah (melalui monitor-monitor futuristik tersebut) terhadap apa-apa yang akan terjadi dikemudian hari? Apakah Anda akan mengingkari bahwa jauh setelah sepeninggal Rasul ada banyak sekali manusia-manusia yang mampu meramalkan ataupun melihat masa depan seseorang ?
Dalam dunia komputer kita mengenal virtual reality (VR) yaitu penampakan alam nyata ke dalam dimensi multimedia digital yang sangat interaktif sehingga bagaikan keadaan sesungguhnya. Apakah tidak mungkin Rasulullah telah merasakan fasilitas VR dari Allah Swt untuk mempresentasikan kepada kekasihNya itu surga dan neraka yang dijanjikanNya?

Anda pasti pernah mendengar sebutan “Paranormal” bukan? Jika anda mempercayai semua itu, maka apalah susahnya bagi anda untuk mempercayai bahwa hal itupun terjadi pada diri Rasulullah Saw, hanya saja bedanya bahwa semua itu merupakan gambaran asli dari Allah Swt yang sudah pasti kebenarannya tanpa bercampur dengan hal-hal yang batil.
Hal ini juga bisa kita buktikan dengan banyaknya ramalan-ramalan Nabi terhadap keadaan umat Islam setelah beliau tiada dan menjadi kenyataan tanpa sedikitpun meleset? Darimana Rasulullah dapat melakukannya jika tidak diperlihatkan oleh Allah sebelumnya ?
Allah memberikan kebijaksanaan kepada siapa yang dikehendaki- Nya. Dan barangsiapa yang diberi hikmah, sungguh telah diberi kebajikan yang banyak. Dan tak ada yang dapat mengambil pelajaran kecuali orang-orang yang berakal.
(QS. 2:269)
Hikmah dalam ayat 2:269 dan ayat-ayat lainnya, saya artikan sebagai kebijaksanaan yang diberikan oleh Allah kepada hamba-hambaNya, kebijaksanaan ini berarti sangat luas, baik dalam bidang ilmu pengetahuan dunia atau akhirat, sebagai perwujudan dari Rahman dan RahimNya.
Didalam Hadist disebutkan bahwa Nabi Muhammad Saw berangkat ke Muntaha dengan ditemani oleh malaikat Jibril yang didalam AlQur’an surah 53:6 dikatakan memiliki akal yang cerdas. Dan dalam perjalanan itu Nabi diberikan kendaraan bernama Buraq yang kecepatannya melebihi kecepatan sinar.
Selanjutnya selama perjalanan Nabi banyak bertanya kepada malaikat Jibril tentang apa-apa yang diperlihatkan oleh Allah kepadanya, ini menunjukkan bahwa Nabi dan Jibril berada dalam jarak yang berdekatan. Tidak mungkinkah Jibril ini yang mengemudikan Buraq untuk menuju ke Muntaha? Dalam kata lain, Jibril sebagai pilot dan Muhammad sebagai penumpang?
Bukankah Muhammad sendiri baru pertama kali itu mengadakan perjalanan ruang angkasa, sementara Jibril telah ratusan atau bahkan jutaan kali melakukannya didalam mengemban wahyu yang diamanatkan oleh Allah?
Jika dikatakan Nabi sebagai pilot, dari mana Nabi mengetahui arah tujuannya berikut tata cara pengemudian Buraq ini, apalagi ditambah dengan banyaknya visi-visi alias Virtual Reality yang diberikan oleh Allah kepada beliau selama perjalanan dan mengharuskannya mengajukan beragam pertanyaan kepada Jibril?
Namun jika kita kembalikan pada pendapat saya semula bahwa Jibril dalam hal ini berlaku sebagai pilot dan Nabi sebagai penumpang, maka semua pertanyaan dan keraguan yang timbul akan hilang.
Dalam hal ini Jibril adalah pilot terbang berpengalaman, ia juga sangat cerdas, sementara atas diri Nabi sendiri sudah diberikan oleh Allah Barqah disekeliling beliau, sehingga setiap perubahan yang terjadi dalam perjalanan, seperti goyangnya pesawat, tekanan gravitasi yang hilang, udara dan lain sebagainya tidak akan berpengaruh apa-apa pada diri Nabi yang mulia ini.
Dan keadaan yang tanpa pengaruh apa-apa itu memungkinkan bagi Nabi untuk mengadakan pertanyaan-pertanya an atas visi-visi yang dilihatnya itu sekaligus dapat melihatnya secara jelas/Virtual Reality .
Kembali pada Jibril yang senantiasa meminta izin didalam memasuki setiap lapisan langit kepada malaikat penjaga, itu dikarenakan bahwa mereka tidak mengenali Jibril yang berada didalam Buraq itu, sehingga begitu Jibril menjawab, mereka baru bisa mengenali suaranya dan melakukan pendeteksian secara visi keadaan dalam Buraq sehingga nyatalah bahwa yang datang itu benar-benar Jibril.
Didalam Hadist juga disebutkan bahwa malaikat penjaga langit itu juga menanyakan tentang identitas sosok manusia yang dibawa oleh malaikat Jibril, yang tidak lain dari Rasulullah Muhammad Saw. Dan dijelaskan oleh Jibril bahwa Rasulullah Saw diutus oleh Allah dan telah pula diperintahkan untuk naik ke Muntaha. (Hadist mengenai ini diriwayatkan oleh Bukhari-Muslim dan dinyatakan oleh jumhur ulama dari ahlussunnah sebagai Hadist yang shahih).
Hal ini memang berkesan lucu bagi sebagian orang, apalagi mengingat bahwa Nabi adalah manusia yang paling mulia yang mendapatkan kedudukan terhormat yang bisa dibuktikan dengan bersandingnya nama Allah dan nama beliau dalam dua buah khalimah syahadat yang tidak boleh dicampuri, ditambah atau dikurangi dengan berbagai nama lain karena tiada hak bagi makhluk lainnya mencampuri masalah ini.
Namun justru disinilah letak kebesaran Tuhan. Semuanya sengaja dipertunjukkan secara ilmiah kepada Nabi agar beliau dapat membuktikan sendiri betapa ketatnya penjagaan langit itu sebenarnya.
Seperti yang sudah dibahas di halaman artikel “Kajian Israk Miqraj” bahwa Muntaha itu terletak digalaksi terjauh, dimana Adam dulunya diciptakan dan ditempatkan pertama kali bersama Hawa.
Tetapi sejak Adam bersama istrinya dan juga Jin serta Iblis diusir oleh Allah dari sana, maka penjagaan terhadap tempat tersebut diperketat sedemikian rupanya, sehingga tidak memungkinkan siapapun juga kecuali para malaikat untuk dapat memasukinya, seperti yang termuat dalam ayat ke-8,9 dan 10 dari surah 72:
“…Dan sesungguhnya kami dahulu dapat menduduki beberapa tempat di langit itu.” (QS. 72:9) ”…kami mendapatinya penuh dengan penjagaan yang kuat dan panah-panah api.” (QS. 72:8) ”…Tetapi sekarang barang siapa yang mencoba mendengarkan tentu akan menjumpai panah api yang mengintai.” (QS. 72:9)
Dalam hal ini bisa diasumsikan bahwa yang disebut dengan lapisan langit pada Muntaha itu adalah berupa planet-planet yang terdekat dengan “bumi-muntaha” , hal ini saya hubungkan dengan pernyataan Qur’an pada surah 72:9 bahwa Jin atau Iblis itu dapat menduduki beberapa tempat.
Mampu menduduki tempat disana artinya mampu berdiam ditempat tersebut, dan karena tempat itu ganda (beberapa tempat), maka jelas tempat itu bukan Muntaha itu sendiri, namun tempat yang terdekat dari Muntaha.

Sesuai dengan kajian saya sebelumnya, bahwa Muntaha itu berupa bumi yang disekitarnya juga terdapat planet-planet, maka planet-planet itulah tempat atau posisi para syaithan itu berdiam dahulunya untuk mencuri dengar berita-berita langit.
Muntaha sendiri berarti “Dihentikan” atau bisa juga kita tafsirkan sebagai tempat terakhir dari semua urusan berlabuh. Tempat yang menjadi perbatasan segala pencapaian kepada Tuhan.

teratai

Sidrah berarti “Teratai” yaitu bunga yang berdaun lebar, hidup dipermukaan air kolam atau telaga. Uratnya panjang mencapai tanah dasar air tersebut. Bilamana pasang naik, teratai akan ikut naik, dan bila pasang surut diapun akan turun, sementara uratnya tetap terhujam pada tanah dasar tempatnya bertumbuh.
Teratai yang berdaun lebar menyerupai keadaan planet yang memiliki permukaan luas, sungguh harmonis untuk tempat kehidupan makhluk hidup. Teratai berurat panjang mencapai tanah dasar dimana dia tumbuh tidak mungkin bergerak jauh, menyerupai keadaan planet yang selalu berhubungan dengan matahari darimana dia tidak mungkin bergerak jauh dalam orbit zigzagnya dari garis ekliptik. Dan air dimana teratai berada menyerupai angkasa luas dimana semua planet yang ada mengorbit mengelilingi matahari.

Turun naik teratai dipermukaan air berarti orbit planet mengelilingi matahari berbentuk oval, bujur telur, dimana ada titik Perihelion yaitu titik terdekat pada matahari yang dikitarinya, begitupula ada titik Aphelion, titik terjauh dari matahari. Sewaktu planet berada di Aphelionnya dia bergerak lambat. Keadaan gerak demikian membantu kestabilan orbit setiap planet yang mulanya hanya didasarkan atas kegiatan magnet yang dimilikinya saja.
Allah sendiri tidak berposisi di Muntaha, meskipun Muntaha itu merupakan planet terjauh dan terpinggir dalam bentangan alam semesta sekaligus sebagai dimensi tertinggi, dimana mayoritas malaikat berada disana sembari memuji dan bertasbih kepada Allah, ia hanyalah sebagai suatu tempat ciptaan Allah yang pada hari kiamat kelak akan dileburkan pula dan semua isinya, termasuk para malaikat itu akan mati kecuali siapa yang dikehendakiNya saja (QS. 27:87), hanya Allah sajalah satu-satunya dimensi Tertinggi yang kekal dan abadi (QS. 2:255).

Rabu, 13 Februari 2013

Kanjeng Ratu Laut Kidul Berasal dari Tanah Batak (Bagian 1)

Di Sadur dari Artikel: AGUS SISWANTO DAN EKA SUPRIATNA
Pada tgl. 6 Februari 2008 lalu, Misteri mendapat undangan seorang rekan bernama Malau. Beliau mengajak Misteri untuk mengikuti ritual di Pelabuhan Ratu, Sukabumi. Sebuah ritual untuk mengungkap asal usul Kanjeng Ratu Kidul. Tentu saja tawaran itu Misteri sambut hangat. Terlebih ketika dia mengatakan bahwa Kanjeng Ratu Kidul berasal dari Tanah Batak.
Sejauh ini terdapat berbagai pendapat seputar asal usul sosok Kanjeng Ratu Kidul. Ada yang mengatakan, Kanjeng Ratu Kidul sesungguhnya adalah Ratu Bilqis, isteri Nabi Sulaiman Alaihissalam. Dikisahkan, setelah wafatnya Nabi Sulaiman as., Ratu Bilqis mengasingkan dirinya ke suatu negeri. Di sana beliau bertapa hingga moksa atau ngahyang.
Legenda lain seputar Kanjeng Ratu Kidul adalah Dewi Nawang Wulan, sosok bidadari yang pernah diperisteri Jaka Tarub. Sedangkan kisah lain tidak secara spesifik menyebutkan asal Kanjeng Ratu Kidul, kecuali dia puteri seorang raja di Tanah Jawa.
Sinyalemen Kanjeng Ratu Kidul berasal dari Tanah Batak bukannya tanpa alasan. Isu ini pertama kali dibicarakan tahun 1985, ketika dalam suatu acara adat Batak di Taman Mini Indonesia Indah (TMII), beberapa orang mengangkat masalah ini. Tetapi rupanya tidak terlalu mendapat respon yang hadir. Isu pun tenggelam dengan sendirinya.
Ketika Misteri membuka internet, hanya terdapat satu situs yang menyinggung masalah ini. Itupun hanya dalam beberapa baris kalimat saja. Demikian kutipannya:
“Ini dia cerita tentang Ratu Laut Selatan yang dipercaya sebagian orang sebagai Biding Laut, saudara dari Saribu Raja yang notabene adalah keturunan Raja Batak.…tapi baca dulu kisahnya ya… siapa tau Nyi Roro Kidul emang keturunan Raja Batak”. (23 desember 2004, http://mappa.blogspot.com). Hanya sekilas saja kalimat yang menyinggung Kanjeng Ratu Kidul sebagai orang Batak.
Padahal, sebagaimana diungkapkan Silalahi, di daerah Samosir ada seorang wanita yang kerap kali kemasukan roh Kanjeng Ratu Kidul. Wanita bernama Boru Tumorang ini sering mengaku sebagai Kanjeng Ratu Kidul ketika sedang trance. Itulah sebabnya, Boru Tumorang sengaja didatangkan ke Jawa untuk mengikuti ritual menguak asal usul Kanjeng Ratu Kidul.
LEGENDA BIDING LAUT
Sebelum melakukan perjalanan ke Pelabuhan Ratu, Sukabumi, Misteri menyempatkan diri berbincang-bincang dengan Silalahi (40 thn), spiritualis yang akan memimpin ritual tersebut.
“Legenda asal usul Kanjeng Ratu Kidul berasal dari Tanah Batak ini tidak lepas dari kisah Raja-raja Batak,” demikian Silalahi memulai ceritanya.
Dikisahkan, perjalanan etnis Batak dimulai dari seorang raja yang mempunyai dua orang putra. Putra sulung diberi nama Guru Tatea Bulan dan kedua diberi nama Raja Isumbaon.
Putra sulungnya, yakni Guru Tatea Bulan memiliki 11 anak (5 putera dan 6 puteri). Kelima putera bernama: Raja Uti, Saribu Raja, Limbong Mulana, Sagala Raja dan Lau Raja. Sedangkan keenam puteri bernama: Biding Laut, Siboru Pareme, Paronnas, Nan Tinjo, Bulan dan Si Bunga Pandan.
Putri tertua yakni Biding Laut memiliki kecantikan melebihi adik perempuan lainnya. Dia juga memiliki watak yang ramah dan santun kepada orangtuanya. Karena itu, Biding Laut tergolong anak yang paling disayangi kedua orangtuanya.
Namun, kedekatan orangtua terhadap Biding Laut ini menimbulkan kecemburuan saudara-saudaranya yang lain. Mereka lalu bersepakat untuk menyingkirkan Biding Laut.
Suatu ketika, saudara-saudaranya menghadap ayahnya untuk mengajak Biding Laut jalan-jalan ke tepi pantai Sibolga. Permintaan itu sebenarnya ditolak Guru Tatea Bulan, mengingat Biding Laut adalah puteri kesayangannya. Tapi saudara-saudaranya itu mendesak terus keinginannya, sehingga sang ayah pun akhirnya tidak dapat menolaknya.
Pada suatu hari, Biding Laut diajak saudara-saudaranya berjalan-jalan ke daerah Sibolga. Dari tepi pantai Sibolga, mereka lalu menggunakan 2 buah perahu menuju ke sebuah pulau kecil bernama Pulau Marsala, dekat Pulau Nias.
Tiba di Pulau Marsala, mereka berjalan-jalan sambil menikmati keindahan pulau yang tidak berpenghuni tersebut. Sampai saat itu, Biding Laut tidak mengetahui niat tersembunyi saudara-saudaranya yang hendak mencelakakannya. Biding Laut hanya mengikuti saja kemauan saudara-saudaranya berjalan semakin menjauh dari pantai.
Menjelang tengah hari, Biding Laut merasa lelah hingga dia pun beristirahat dan tertidur. Dia sama sekali tidak menduga ketika dirinya sedang lengah, kesempatan itu lalu dimanfaatkan saudara-saudaranya meninggalkan Biding laut sendirian di pulau itu.
Di pantai, saudara-saudara Biding Laut sudah siap menggunakan 2 buah perahu untuk kembali ke Sibolga. Tetapi salah seorang saudaranya mengusulkan agar sebuah perahu ditinggalkan saja. Dia khawatir kalau kedua perahu itu tiba di Sibolga akan menimbulkan kecurigaan. Lebih baik satu saja yang dibawa, sehingga apabila ada yang menanyakan dikatakan sebuah perahunya tenggelam dengan memakan korban Biding Laut.
Tapi apa yang direncanakan saudara-saudaranya itu bukanlah menjadi kenyataan, karena takdir menentukan lain.
BIDING LAUT DI TANAH JAWA
Ketika terbangun dari tidurnya, Biding Laut terkejut mendapati dirinya sendirian di Pulau Marsala. Dia pun berlari menuju pantai mencoba menemui saudara-saudaranya. Tetapi tidak ada yang dilihatnya, kecuali sebuah perahu.
Biding laut tidak mengerti mengapa dirinya ditinggalkan seorang diri. Tetapi dia pun tidak berpikiran saudara-saudaranya berusaha mencelakakannya. Tanpa pikir panjang, dia langsung menaiki perahu itu dan mengayuhnya menuju pantai Sibolga.
Tetapi ombak besar tidak pernah membawa Biding Laut ke tanah kelahirannya. Selama beberapa hari perahunya terombang-ombang di pantai barat Sumatera. Entah sudah berapa kali dia pingsan karena kelaparan dan udara terik. Penderitaannya berakhir ketika perahunya terdampar di Tanah Jawa, sekitar daerah Banten.
Seorang nelayan yang kebetulan melihatnya kemudian menolong Biding Laut. Di rumah barunya itu, Biding Laut mendapat perawatan yang baik. Biding Laut merasa bahagia berada bersama keluarga barunya itu. Dia mendapat perlakuan yang sewajarnya. Dalam sekejap, keberadaannya di desa itu menjadi buah bibir masyarakat, terutama karena pesona kecantikannya.
Dikisahkan, pada suatu ketika daerah itu kedatangan seorang raja dari wilayah Jawa Timur. Ketika sedang beristirahat dalam perjalanannya, lewatlah seorang gadis cantik yang sangat jelita bak bidadari dari kayangan dan menarik perhatian Sang Raja. Karena tertariknya, Sang Raja mencari tahu sosok jelita itu yang ternyata Biding Laut. Terpesona kecantikan Biding Laut, sang raja pun meminangnya.
Biding Laut tidak menolak menolak pinangan itu, hingga keduanya pun menikah. Selanjutnya Biding Laut dibawanya serta ke sebuah kerajaan di Jawa Timur.
TENGGELAM DI LAUT SELATAN
Biding Laut hidup berbahagia bersama suaminya yang menjadi raja. Tetapi kebahagiaan itu tidak berlangsung lama. Terjadi intrik di dalam istana yang menuduh Biding Laut berselingkuh dengan pegawai kerajaan. Hukum kerajaan pun ditetapkan, Biding Laut harus dihukum mati.
Keadaan ini menimbulkan kegalauan Sang Raja. Dia tidak ingin isteri yang sangat dicintainya itu di hukum mati, sementara hukum harus ditegakkan. Dalam situasi ini, dia lalu mengatur siasat untuk mengirim kembali Biding Laut ke Banten melalui lautan.
Menggunakan perahu, Biding Laut dan beberapa pengawal raja berangkat menuju Banten. Mereka menyusuri Samudera Hindia atau yang dikenal dengan Laut Selatan.
Namun malang nasib mereka. Dalam perjalanan itu, perahu mereka tenggelam diterjang badai. Biding Laut dan beberapa pengawalnya tenggelam di Laut Selatan.
Demikianlah sekelumit legenda Biding Laut yang dipercaya sebagai sosok asli Kanjeng Ratu Kidul.
“Dalam legenda raja-raja Batak, sosok Biding Laut memang masih misterius keberadaannya, Sedangkan anak-anak Guru Tatea Bulan yang lain tercantum dalam legenda,” kata Silalahi dengan mimik serius.
Sementara itu, Boru Tumorang (45 thn) mengaku sudah lama dirinya sering kemasukan roh Kanjeng Ratu Kidul. Terutama terjadi saat kedatangan tamu yang minta tolong dirinya untuk melakukan pengobatan. Tetapi Boru Tumorang tidak mengerti mengapa raganya yang dipilih Kanjeng Ratu Kidul. Semuanya terjadi diluar keinginannya.

Kanjeng Ratu Laut Kidul Berasal dari Tanah Batak (Bagian 2)

RITUAL PEMANGGILAN KANJENG RATU KIDUL
Untuk membuktikan keberadaan sosok legenda Biding Laut yang dipercaya sebagai Kanjeng Ratu Kidul, Misteri bersama 8 orang rekan yang semuanya bersuku Batak sengaja datang ke Pelabuhan Ratu untuk melakukan ritual pemanggilan roh Kanjeng Ratu Kidul.
Lokasi pertama adalah makam Guru Kunci Batu Kendit Abah Empar. Lokasi ini cukup dikenal masyarakat, terutama yang hendak melakukan ritual pemanggilan Kanjeng Ratu Kidul. Konon, di tempat ini Kanjeng Ratu Kidul memang biasa muncul.
Sebelum melakukan ritual, sebagaimana biasanya beberapa ubo rampe telah disiapkan, diantaranya: jeruk, jeruk purut, apel, daun sirih, pisang raja, anggur, minyak jin, kembang sepatu, tepung beras, kelapa dan gula (itaguruguru-bahasa Batak).
Sekitar pukul 22.30 malam, dimulailah acara ritual pemanggilan roh Kanjeng Ratu Kidul. Ketika itu, Silalahi dan Boru Tumorang tampak membaca mantera-mantera. Beberapa saat kemudian, Silalahi mulai menampakkan perubahan ekspresi wajah. Sosok gaib yang dipanggil tampaknya telah merasuk ke dalam raganya. Belakangan Misteri mengetahui, sosok gaib itu adalah roh Raja Batak.
Sementara dalam waktu hampir bersamaan, Boru Tumorang pun memperlihatkan ekspresi kesurupan. Tiba-tiba tubuhnya tersungkur lalu merangkak bergeser posisi. Setelah itu, dia kembali duduk dengan wajah tertunduk dan mata terpejam. Roh Kanjeng Ratu Kidul telah merasuk ke dalam raga wanita asal Samosir ini.
Terjadilah dialog dalam bahasa Batak antara Silalahi (yang sudah kemasukan roh Raja Batak) dengan Boru Tumorang dan beberapa orang yang hadir. Sepanjang dialog itu, ekspresi wajah Boru Tumorang berubah-ubah. Terkadang tersenyum, tertawa, menangis dan melantunkan lagu berisi sejumlah nasehat.
Kalimat pertama yang diucapkan Kanjeng Ratu Kidul adalah
”Kenapa baru sekarang kalian datang untuk menemui saya? Padahal saya sudah lama berada di sini,”ujar Kanjeng Ratu Kidul melalui bibir Boru Tumorang.
Ketika salah seorang yang hadir bertanya tentang Biding Laut, seketika Kanjeng Ratu Kidul menukas,” Ya, sayalah Biding Laut. Terserah apakah kalian akan percaya atau tidak.”
Selanjutnya dialog meluncur begitu saja. Beberapa dialog yang Misteri catat diantaranya saat Boru Tumorang menangis sambil berkata:
“Boasa gudang hamo nalupa tuauito (kenapa kalian sudah lupa sama saya)?” ujar Kanjeng Ratu Kidul melalui bibir Boru Tumorang. “Ahado sisukunonmuna (Apa yang kalian mau pertanyakan)?” lanjut Kanjeng Ratu Kidul.
“Hamirotuson nanboru namagido tangiansiangho (Kami datang kesini untuk minta doa dari Nyai),” jawab salah seorang yang hadir.
“Asadikontuhata pasupasu dohut rajohi (Biar diberikan Tuhan berkat kepada kami),” kata yang lain.
Tampak Boru Tumorang menggoyang-goyangkan tubuhnya. Kepalanya seperti digelengkan, terkadang mengangguk-angguk. Sesaat kemudian dia berkata,
“Posmaruham, paubahamuma pangalaho rohamuna (Percayalah. Asalkan kalian berubah sikap dan tingkah laku menjadi lebih baik, itu pasti akan terjadi).”
Selanjutnya dia berkata lagi,”Asarat martonggo mahita tuoputa (Marilah kita bersama-sama berdoa kepada Tuhan).”
“Molonang muba rohamu nalaroma balainna he he mamuse kuti tuinjang (Kalau tidak berubah sikap dengan baik akan muncul bencana lagi-tsunami)”
“Dangdiadia dope namasae naosolpu nalaroma muse naung gogosiani (Belum seberapa bencana yang sudah lalu. Lebih dahsyat bencana yang akan datang lagi. Kalau kalian tidak percaya kepada Tuhan).”
Nasehat Kanjeng Ratu Kidul itu tampaknya ditujukan ke semua orang. Sedangkan kepada anak keturunannya dari suku Batak, Kanjeng Ratu Kidul berkata,
”Posmarohamu amang paboanhudoi tuhamu pomparanhu dibagasan parnipion (Percayalah. Semua keturunanku akan saya beritahukan lewat mimpi masing-masing).”
“Posmaroham amang patureon hudo sube popparamme (Percayalah, akan saya bantu dan saya tolong semua keturunannmu ini).
Kanjeng Ratu Kidul juga berpesan kepada semua manusia agar tidak membeda-bedakan suku,
”Pabohamu tumanisiae asa unang mambedahon popparanhisude (Beritahu kepada semua manusia supaya tidak membedakan suku).”
Dialog dengan roh Kanjeng Ratu Kidul itu berlangsung sekitar setengah jam. Isi dialog sarat dengan nasehat kepada manusia agar selalu berbuat kebajikan.
Namun yang pasti, dalam dialog itu juga Kanjeng Ratu Kidul menceritakan sosok asal usul dirinya dan nama aslinya.
Upaya penelusuran ini membuka wacana baru seputar asal usul Kanjeng Ratu Kidul. Acara ritual ini pun tidak dimaksudkan untuk membenarkan satu fihak. Sebagaimana dikatakan Silalahi,
“Kami tidak bermaksud mengklaim kebenaran pendapat kami,”ujar Silalahi sambil tersenyum. “Tetapi kami hanya mencoba mengangkat kembali sebuah isu yang sudah lama berkembang di daerah kami. Kebenarannya boleh saja diperdebatkan,” lanjutnya.
Benar apa yang dikatakannya. Sosok gaib Kanjeng Ratu Kidul memang layak diperdebatkan. Keberadaan maupun asal usulnya bisa darimanapun juga. Tetapi yang pasti, nasehat-nasehat Kanjeng Ratu Kidul yang diucapkan melalui medium yang keserupan, seringkali mengingatkan kita untuk selalu percaya kepada Tuhan.

Rabu, 28 November 2012

Galaksi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Galaksi NGC 4414, spiral galaksi pada rasi bintang Coma Berenices, berdiameter sekitar 17.000 parsec dan berjarak 20 juta parsec.
Galaksi adalah sebuah sistem yang terikat oleh gaya gravitasi yang terdiri atas bintang (dengan segala bentuk manifestasinya, antara lain bintang neutron dan lubang hitam), gas dan debu kosmik medium antarbintang, dan kemungkinan substansi hipotetis yang dikenal dengan materi gelap.[1][2] Kata galaksi berasal dari bahasa Yunani galaxias [γαλαξίας], yang berarti "susu," yang merujuk pada galaksi Bima Sakti (bahasa Inggris: Milky Way). Tipe-tipe galaksi berkisar dari galaksi kerdil dengan sepuluh juta[3] (107) bintang hingga galaksi raksasa dengan satu triliun [4] (1012) bintang, semuanya mengorbit pada pusat galaksi. Matahari adalah salah satu bintang di galaksi Bima Sakti; tata surya termasuk bumi dan semua benda yang mengorbit Matahari.
Kemungkinan terdapat lebih dari 100 miliar (1011) galaksi pada alam semesta teramati.[5] Sebagian besar galaksi berdiameter 1000 hingga 100.000 [4] parsec dan biasanya dipisahkan oleh jarak yang dihitung dalam jutaan parsec (atau megaparsec).[6] Ruang antar galaksi terisi dengan gas yang memiliki kerapatan massa kurang dari satu atom per meter kubik. Sebagian besar galaksi diorganisasikan ke dalam sebuah himpunan yang disebut klaster, untuk kemudian membentuk himpunan yang lebih besar yang disebut superklaster. Struktur yang lebih besar ini dikelilingi oleh ruang hampa di dalam alam semesta.[7]
Meskipun belum dipahami secara menyeluruh, materi gelap terlihat menyusun sekitar 90% dari massa sebagian besar galaksi. Data pengamatan menunjukkan lubang hitam supermasif kemungkinan ada pada pusat dari banyak (kalau tidak semua) galaksi.

Daftar isi

 [sembunyikan

[sunting] Etimologi

Kata galaksi diturunkan dari istilah bahasa Yunani untuk Milky Way (galaksi kita), galaxias (γαλαξίας), atau kyklos galaktikos. Kata ini berarti "lingkaran susu", sesuai dengan penampakannya di angkasa. Dalam mitologi Yunani, Zeus menempatkan anak laki-lakinya yang dilahirkan oleh manusia biasa, bayi Heracles, pada payudara Hera ketika Hera sedang tidur sehingga bayi tersebut meminum susunya dan karena itu menjadi manusia abadi. Hera terbangun ketika sedang menyusui dan kemudian menyadari ia sedang menyusui bayi yang tak dikenalnya: ia mendorong bayi tersebut dan air susunya menyembur mewarnai langit malam, menghasilkan pita cahaya tipis yang dikenal dalam bahasa Inggris sebagai Milky Way (jalan susu).[8]

[sunting] Tipe dan morfologi

Jenis-jenis galaksi berdasarkan sistem klasifikasi Hubble. E merupakan tipe galaksi eliptik, S merupakan galaksi spiral, dan SB merupakan galaksi spiral berbatang.[note 1]
Galaksi dapat dikelompokkan dalam tiga jenis utama: eliptik, spiral dan irregular. Karena sistem klasifikasi Hubble hanya berdasarkan pada pengamatan visual, klasifikasi ini mungkin melewatkan beberapa karakteristik penting dari galaksi, seperti laju pembentukan bintang (di galaksi starburst) dan aktivitas inti galaksi (di galaksi aktif).[9]

[sunting] Eliptik

Sistem klasifikasi Hubble membedakan galaksi eliptik berdasarkan tingkat keelipsannya, dari E0 yang hampir berupa lingkaran, hingga E7 yang sangat lonjong. Galaksi tersebut memiliki bentuk dasar elipsoid, sehingga tampak elips dari berbagai sudut pandang. Galaksi tipe ini tampak memiliki sedikit struktur dan sedikit materi antar bintang, sehingga galaksi tersebut memiliki sedikit gugus terbuka dan laju pembentukan bintang yang lambat. Galaksi tipe ini didominasi oleh bintang yang berumur tua yang mengorbit pusat gravitasi dengan arah yang acak. Dalam hal tersebut, galaksi tipe ini mirip dengan gugus bola.[10] "Galaxies". Cornell University. 20 Oktober 2005. http://curious.astro.cornell.edu/galaxies.php.  Galaksi starburst merupakan akibat dari tabrakan antar galaksi dan dapat menghasilkan pembentukan galaksi eliptik.

[sunting] Spiral

Galaksi Pusaran (kiri), sebuah galaksi spiral tanpa batang.
Galaksi spiral terdiri dari piringan berupa bintang dan materi antar bintang yang berotasi, serta gembung pusat yang terdiri dari bintang-bintang tua. Terdapat lengan spiral yang menjulur dari gembung pusat. Dalam sistem klasifikasi Hubble, galaksi spiral ditandai sebagai tipe S, diikuti huruf (a, b, atau c) yang menunjukkan tingkat kerapatan dari lengan spiral dan ukuran dari gembung pusat. Galaksi Sa memiliki lengan spiral yang kurang jelas dan membelit secara rapat, serta gembung pusat yang relatif besar. Sedangkan galaksi Sc memiliki lengan spiral yang terbuka dan gembung pusat yang relatif kecil.[11]
NGC 1300, contoh galaksi spiral berbatang.
Sebagian besar galaksi spiral memiliki bentuk batang linier yang memanjang ke dua sisi dari gembung inti, yang kemudian bergabung dengan struktur lengan spiral.[12] Di sistem klasifikasi Hubble, galaksi ini dikategorikan sebagai SB, dan diikuti huruf (a, b atau c) yang mengindikasikan bentuk lengan spiralnya. Batang galaksi diperkirakan merupakan struktur sementara yang disebabkan oleh gelombang kejut dari inti galaksi, atau karena interaksi pasang surut dengan galaksi lain.[13] Banyak galaksi spiral berbatang yang berinti aktif, kemungkinan karena adanya gas yang menuju ke inti melalui lengan spiral.[14]
Galaksi Bima Sakti merupakan galaksi spiral berbatang ukuran besar[15] dengan diameter sekitar 30 kiloparsecs dan ketebalan sekitar satu kiloparsec. Bima Sakti memiliki sekitar 200 milyar (2×1011)[16] bintang dengan massa total sekitar 600 milyar (6×1011) kali massa Matahari.[17]

[sunting] Morfologi lain

Galaksi aneh (peculiar galaxies) merupakan galaksi yang memiliki sifat-sifat yang tidak biasa karena interaksi pasang surut dengan galaksi lain. Contohnya adalah galaksi cincin, yang memiliki struktur mirip cincin berupa bintang dan materi antar bintang yang mengelilingi inti kosong. Galaksi cincin diperkirakan terbentuk saat galaksi kecil melewati inti galaksi yang lebih besar.[18] Kejadian tersebut mungkin terjadi pada galaksi Andromeda yang memiliki beberapa struktur mirip cincin jika diamati pada spektrum inframerah.[19]
Galaksi lenticular merupakan bentuk pertengahan yang memiliki sifat baik dari galaksi eliptik maupun galaksi spiral, dan dikategorikan sebagai tipe S0 dan memiliki lengan spiral yang samar-samar serta halo bintang berbentuk eliptik.[20] (Barred lenticular galaxies receive Hubble classification SB0.)

[sunting] Catatan

  1. ^ Galaksi pada sisi kiri skema klasifikasi Hubble sering disebut sebagai tipe awal, sedangkan pada sisi kanan sebagai tipe akhir.

[sunting] Referensi

  1. ^ Sparke, L. S.; Gallagher III, J. S. (2000). Galaxies in the Universe: An Introduction. Cambridge: Cambridge University Press. ISBN 0-521-59704-4. 
  2. ^ Hupp, E.; Roy, S.; Watzke, M. (2006-08-12). "NASA Finds Direct Proof of Dark Matter". NASA. http://www.nasa.gov/home/hqnews/2006/aug/HQ_06297_CHANDRA_Dark_Matter.html. Diakses pada 17 April 2007. 
  3. ^ "Unveiling the Secret of a Virgo Dwarf Galaxy". ESO. 3 Mei 2000. http://www.eso.org/outreach/press-rel/pr-2000/pr-12-00.html. Diakses pada 3 Januari 2007. 
  4. ^ a b "Hubble's Largest Galaxy Portrait Offers a New High-Definition View". NASA. 28 Februari 2006. http://www.nasa.gov/mission_pages/hubble/science/hst_spiral_m10.html. Diakses pada 3 Januari 2007. 
  5. ^ Mackie, Glen (2002-02-01). "To see the Universe in a Grain of Taranaki Sand". Swinburne University. http://astronomy.swin.edu.au/~gmackie/billions.html. Diakses pada 20 Desember 2006. 
  6. ^ Gilman, D.. "The Galaxies: Islands of Stars". NASA WMAP. http://www.hq.nasa.gov/office/pao/History/EP-177/ch4-7.html. Diakses pada 10 Agustus 2006. 
  7. ^ "Galaxy Clusters and Large-Scale Structure". University of Cambridge. http://www.damtp.cam.ac.uk/user/gr/public/gal_lss.html. Diakses pada 15 Januari 2007. 
  8. ^ Koneãn˘, Lubomír. "Emblematics, Agriculture, and Mythography in The Origin of the Milky Way" (PDF). Academy of Sciences of the Czech Republic. http://www.udu.cas.cz/collegium/tintoretto.pdf. Diakses pada 5 Januari 2007. 
  9. ^ Jarrett, T. H.. "Near-Infrared Galaxy Morphology Atlas". California Institute of Technology. http://www.ipac.caltech.edu/2mass/gallery/galmorph/. Diakses pada 9 Januari 2007. 
  10. ^ Barstow, M. A. (2005). "Elliptical Galaxies". Leicester University Physics Department. http://www.star.le.ac.uk/edu/Elliptical.shtml. Diakses pada 8 Juni 2006. 
  11. ^ Smith, G. (06-03-2000). "Galaxies — The Spiral Nebulae". University of California, San Diego Center for Astrophysics & Space Sciences. http://casswww.ucsd.edu/public/tutorial/Galaxies.html. Diakses pada 30 November 2006. 
  12. ^ Eskridge, P. B.; Frogel, J. A. (1999). "What is the True Fraction of Barred Spiral Galaxies?". Astrophysics and Space Science 269/270: 427–430. doi:10.1023/A:1017025820201. Bibcode1999Ap&SS.269..427E. 
  13. ^ Bournaud, F.; Combes, F. (2002). "Gas accretion on spiral galaxies: Bar formation and renewal". Astronomy and Astrophysics 392 (1): 83–102. doi:10.1051/0004-6361:20020920. Bibcode2002A&A...392...83B. 
  14. ^ Knapen, J. H.; Pérez-Ramírez, D.; Laine, S. (2002). "Circumnuclear regions in barred spiral galaxies — II. Relations to host galaxies". Monthly Notices of the Royal Astronomical Society 337 (3): 808–828. doi:10.1046/j.1365-8711.2002.05840.x. Bibcode2002MNRAS.337..808K. 
  15. ^ Alard, C. (2001). "Another bar in the Bulge". Astronomy and Astrophysics Letters 379 (2): L44–L47. doi:10.1051/0004-6361:20011487. Bibcode2001A&A...379L..44A. 
  16. ^ "Milky Way galaxy is warped and vibrating like a drum ", (UCBerkeley News), 9 Januari 2006. Diakses pada 24 Mei 2006.
  17. ^ Bell, G. R.; Levine, S. E. (1997). "Mass of the Milky Way and Dwarf Spheroidal Stream Membership". Bulletin of the American Astronomical Society 29 (2): 1384. Bibcode1997AAS...19110806B. 
  18. ^ Gerber, R. A.; Lamb, S. A.; Balsara, D. S. (1994). "Ring Galaxy Evolution as a Function of "Intruder" Mass". Bulletin of the American Astronomical Society 26: 911. Bibcode1994AAS...184.3204G. 
  19. ^ European Space Agency (1998-10-14). ISO unveils the hidden rings of Andromeda. Siaran pers. Diakses pada 2006-05-24.
  20. ^ "Spitzer Reveals What Edwin Hubble Missed". Harvard-Smithsonian Center for Astrophysics. 31 Mei 2004. http://www.cfa.harvard.edu/press/pr0419.html. Diakses pada 6 Desember 2006. 

Astronomi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Nebula Kepiting, sekumpulan sisa-sisa supernova. Citra diabadikan oleh teleskop Hubble.
Astronomi ialah cabang ilmu alam yang melibatkan pengamatan benda-benda langit (seperti halnya bintang, planet, komet, nebula, gugus bintang, atau galaksi) serta fenomena-fenomena alam yang terjadi di luar atmosfer Bumi (misalnya radiasi latar belakang kosmik (radiasi CMB)). Ilmu ini secara pokok mempelajari pelbagai sisi dari benda-benda langit — seperti asal-usul, sifat fisika/kimia, meteorologi, dan gerak — dan bagaimana pengetahuan akan benda-benda tersebut menjelaskan pembentukan dan perkembangan alam semesta.
Astronomi sebagai ilmu adalah salah satu yang tertua, sebagaimana diketahui dari artifak-artifak astronomis yang berasal dari era prasejarah; misalnya monumen-monumen dari Mesir dan Nubia, atau Stonehenge yang berasal dari Britania. Orang-orang dari peradaban-peradaban awal semacam Babilonia, Yunani, Cina, India, dan Maya juga didapati telah melakukan pengamatan yang metodologis atas langit malam. Akan tetapi meskipun memiliki sejarah yang panjang, astronomi baru dapat berkembang menjadi cabang ilmu pengetahuan modern melalui penemuan teleskop.
Cukup banyak cabang-cabang ilmu yang pernah turut disertakan sebagai bagian dari astronomi, dan apabila diperhatikan, sifat cabang-cabang ini sangat beragam: dari astrometri, pelayaran berbasis angkasa, astronomi observasional, sampai dengan penyusunan kalender dan astrologi. Meski demikian, dewasa ini astronomi profesional dianggap identik dengan astrofisika.
Pada abad ke-20, astronomi profesional terbagi menjadi dua cabang: astronomi observasional dan astronomi teoretis. Yang pertama melibatkan pengumpulan data dari pengamatan atas benda-benda langit, yang kemudian akan dianalisis menggunakan prinsip-prinsip dasar fisika. Yang kedua terpusat pada upaya pengembangan model-model komputer/analitis guna menjelaskan sifat-sifat benda-benda langit serta fenomena-fenomena alam lainnya. Adapun kedua cabang ini bersifat komplementer — astronomi teoretis berusaha untuk menerangkan hasil-hasil pengamatan astronomi observasional, dan astronomi observasional kemudian akan mencoba untuk membuktikan kesimpulan yang dibuat oleh astronomi teoretis.
Astronom-astronom amatir telah dan terus berperan penting dalam banyak penemuan-penemuan astronomis, menjadikan astronomi salah satu dari hanya sedikit ilmu pengetahuan di mana tenaga amatir masih memegang peran aktif, terutama pada penemuan dan pengamatan fenomena-fenomena sementara.
Astronomi harus dibedakan dari astrologi, yang merupakan kepercayaan bahwa nasib dan urusan manusia berhubungan dengan letak benda-benda langit seperti bintang atau rasinya. Memang betul bahwa dua bidang ini memiliki asal-usul yang sama, namun pada saat ini keduanya sangat berbeda.[1]

Daftar isi

[sunting] Leksikologi

Kata astronomi berasal dari bahasa Yunani, yaitu kata astron (ἄστρον, "bintang") yang kemudian diberi akhiran -nomi dari nomos (νόμος, "hukum" atau "budaya"). Maka secara harafiah ia bermakna "hukum/budaya bintang-bintang".

[sunting] Penggunaan istilah "astronomi" dan "astrofisika"

Secara umum baik "astronomi" maupun "astrofisika" boleh digunakan untuk menyebut ilmu yang sama.[2][3][4] Apabila hendak merujuk ke definisi-definisi kamus yang baku, "astronomi" bermakna "penelitian benda-benda langit dan materi di luar atmosfer Bumi serta sifat-sifat fisika dan kimia benda-benda dan materi tersebut"[5] sedang "astrofisika" adalah cabang dari astronomi yang berurusan dengan "tingkah laku, sifat-sifat fisika, serta proses-proses dinamis dari benda-benda dan fenomena-fenomena langit".[6]
Dalam kasus-kasus tertentu, misalnya pada pembukaan buku The Physical Universe oleh Frank Shu, "astronomi" boleh dipergunakan untuk sisi kualitatif dari ilmu ini, sedang "astrofisika" untuk sisi lainnya yang lebih berorientasi fisika.[7] Namun demikian, penelitian-penelitian astronomi modern kebanyakan berurusan dengan topik-topik yang berkenaan dengan fisika, sehingga bisa saja kita mengatakan bahwa astronomi modern adalah astrofisika.[2] Banyak badan-badan penelitian yang, dalam memutuskan menggunakan istilah yang mana, hanya bergantung dari apakah secara sejarah mereka berafiliasi dengan departemen-departemen fisika atau tidak.[3] Astronom-astronom profesional sendiri banyak yang memiliki gelar di bidang fisika.[4] Untuk ilustrasi lebih lanjut, salah satu jurnal ilmiah terkemuka pada cabang ilmu ini bernama Astronomy and Astrophysics (Astronomi dan Astrofisika).

[sunting] Sejarah

Peta angkasa dari abad ke-17, karya kartografer Belanda Frederik de Wit.
Pada awalnya, astronomi hanya melibatkan pengamatan beserta prediksi atas gerak-gerik benda-benda langit yang terlihat dengan mata telanjang. Pada beberapa situs seperti Stonehenge, peradaban-peradaban awal juga menyusun artifak-artifak yang diduga memiliki kegunaan astronomis. Observatorium-observatorium purba ini jamaknya bertujuan seremonial, namun dapat juga dimanfaatkan untuk menentukan musim, cuaca, dan iklim — sesuatu yang wajib diketahui apabila ingin bercocok tanam — atau memahami panjang tahun.[8]
Sebelum ditemukannya peralatan seperti teleskop, penelitian harus dilakukan dari atas bangunan-bangunan atau dataran yang tinggi, semua dengan mata telanjang. Seiring dengan berkembangnya peradaban, terutama di Mesopotamia, Cina, Mesir, Yunani, India, dan Amerika Tengah, orang-orang mulai membangun observatorium dan gagasan-gagasan mengenai sifat-sifat semesta mulai ramai diperiksa. Umumnya, astronomi awal disibukkan dengan pemetaan letak-letak bintang dan planet (sekarang disebut astrometri), kegiatan yang akhirnya melahirkan teori-teori tentang pergerakan benda-benda langit dan pemikiran-pemikiran filosofis untuk menjelaskan asal-usul Matahari, Bulan, dan Bumi. Bumi kemudian dianggap sebagai pusat jagat raya, sedang Matahari, Bulan, dan bintang-bintang berputar mengelilinginya; model semacam ini dikenal sebagai model geosentris, atau sistem Ptolemaik (dari nama astronom Romawi-Mesir Ptolemeus).[9]
Jam Matahari Yunani, dari Ai-Khanoum (sekarang di Afghanistan), abad 3-2 SM.
Dimulainya astronomi yang berdasarkan perhitungan matematis dan ilmiah dulu dipelopori oleh orang-orang Babilonia.[10] Mereka menemukan bahwa gerhana bulan memiliki sebuah siklus yang teratur, disebut siklus saros.[11] Mengikuti jejak astronom-astronom Babilonia, kemajuan demi kemajuan kemudian berhasil dicapai oleh komunitas astronomi Yunani Kuno dan negeri-negeri sekitarnya. Astronomi Yunani sedari awal memang bertujuan untuk menemukan penjelasan yang rasional dan berbasis fisika untuk fenomena-fenomena angkasa.[12] Pada abad ke-3 SM, Aristarkhos dari Samos melakukan perhitungan atas ukuran Bumi serta jarak antara Bumi dan Bulan, dan kemudian mengajukan model Tata Surya yang heliosentris — pertama kalinya dalam sejarah. Pada abad ke-2 SM, Hipparkhos berhasil menemukan gerak presesi, juga menghitung ukuran Bulan dan Matahari serta jarak antara keduanya, sekaligus membuat alat-alat penelitian astronomi paling awal seperti astrolab.[13] Mayoritas penyusunan rasi bintang di belahan utara sekarang masih didasarkan atas susunan yang diformulasikan olehnya melalui katalog yang waktu itu mencakup 1.020 bintang.[14] Mekanisme Antikythera yang terkenal (ca. 150-80 SM) juga berasal dari periode yang sama: komputer analog yang digunakan untuk menghitung letak Matahari/Bulan/planet-planet pada tanggal tertentu ini merupakan barang paling kompleks dalam sejarah sampai abad ke-14, ketika jam-jam astronomi mulai bermunculan di Eropa.[15]
Di Eropa sendiri selama Abad Pertengahan astronomi sempat mengalami kebuntuan dan stagnansi. Sebaliknya, perkembangan pesat terjadi di dunia Islam dan beberapa peradaban lainnya, ditandai dengan dibangunnya observatorium-observatorium di belahan dunia sana pada awal abad ke-9.[16][17][18] Pada tahun 964, astronom Persia Al-Sufi menemukan Galaksi Andromeda (galaksi terbesar di Grup Lokal) dan mencatatnya dalam Book of Fixed Stars (Kitab Suwar al-Kawakib).[19] Supernova SN 1006, ledakan bintang paling terang dalam catatan sejarah, berhasil diamati oleh astronom Mesir Ali bin Ridwan dan sekumpulan astronom Cina yang terpisah pada tahun yang sama (1006 M). Astronom-astronom besar dari era Islam ini kebanyakan berasal dari Persia dan Arab, termasuk Al-Battani, Tsabit bin Qurrah, Al-Sufi, Ibnu Balkhi, Al-Biruni, Al-Zarqali, Al-Birjandi, serta astronom-astronom dari observatorium-observatorium di Maragha dan Samarkand. Melalui era inilah nama-nama bintang yang berdasarkan bahasa Arab diperkenalkan.[20][21] Reruntuhan-reruntuhan di Zimbabwe Raya dan Timbuktu[22] juga kemungkinan sempat memiliki bangunan-bangunan observatorium[23] — melemahkan keyakinan sebelumnya bahwa tidak ada pengamatan astronomis di daerah sub-Sahara sebelum era kolonial.[24][25][26][27]

[sunting] Revolusi ilmiah

Sketsa Bulan oleh Galileo. Melalui pengamatan, diketahui bahwa permukaan Bulan berbukit-bukit.
Pada Zaman Renaisans, Copernicus menyusun model Tata Surya heliosentris, model yang kemudian dibela dari kontroversi, dikembangkan, dan dikoreksi oleh Galileo dan Kepler. Galileo berinovasi dengan teleskop guna mempertajam pengamatan astronomis, sedang Kepler berhasil menjadi ilmuwan pertama yang menyusun secara tepat dan mendetail pergerakan planet-planet dengan Matahari sebagai pusatnya.[28] Meski demikian, ia gagal memformulasikan teori untuk menjelaskan hukum-hukum yang ia tuliskan, sampai akhirnya Newton (yang juga menemukan teleskop refleksi untuk pengamatan langit) menjelaskannya melalui dinamika angkasa dan hukum gravitasi.[29][28]
Seiring dengan semakin baiknya ukuran dan kualitas teleskop, semakin banyak pula penemuan-penemuan lebih lanjut yang terjadi. Melalui teknologi ini Lacaille berhasil mengembangkan katalog-katalog bintang yang lebih lengkap; usaha serupa juga dilakukan oleh astronom Jerman-Inggris Herschel dengan memproduksi katalog-katalog nebula dan gugusan. Pada tahun 1781 ia menemukan planet Uranus, planet pertama yang ditemui di luar planet-planet klasik.[30] Pengukuran jarak menuju sebuah bintang pertama kali dipublikasikan pada 1838 oleh Bessel, yang pada saat itu melakukannya melalui pengukuran paralaks dari 61 Cygni.[31]
Abad ke-18 sampai abad ke-19 pertama diwarnai oleh penelitian atas masalah tiga-badan oleh Euler, Clairaut, dan D'Alembert; penelitian yang menghasilkan metode prediksi yang lebih tepat untuk pergerakan Bulan dan planet-planet. Pekerjaan ini dipertajam oleh Lagrange dan Laplace, sehingga memungkinkan ilmuwan untuk memperkirakan massa planet dan satelit lewat perturbasi/usikannya.[32] Penemuan spektroskop dan fotografi kemudian mendorong kemajuan penelitian lagi: pada 1814-1815, Fraunhoffer menemukan lebih kurang 600 pita spektrum pada Matahari, dan pada 1859 Kirchhoff akhirnya bisa menjelaskan fenomena ini dengan mengatribusikannya pada keberadaan unsur-unsur. Pada masa ini bintang-bintang dikonfirmasikan sebagai Matahari-matahari lain yang lebih jauh letaknya, namun dengan perbedaan-perbedaan pada suhu, massa, dan ukuran.[20]
Baru pada abad ke-20 Galaksi Bima Sakti (di mana Bumi dan Matahari berada) bisa dibuktikan sebagai kelompok bintang yang terpisah dari kelompok-kelompok bintang lainnya. Dari pengamatan-pengamatan yang sama disimpulkan pula bahwa ada galaksi-galaksi lain di luar Bima Sakti dan bahwa alam semesta terus mengembang, sebab galaksi-galaksi tersebut terus menjauh dari galaksi kita.[33] Astronomi modern juga menemukan dan berusaha menjelaskan benda-benda langit yang asing seperti kuasar, pulsar, blazar, galaksi-galaksi radio, lubang hitam, dan bintang neutron. Kosmologi fisik maju dengan pesat sepanjang abad ini: model Dentuman Besar (Big Bang) misalnya, telah didukung oleh bukti-bukti astronomis dan fisika yang kuat (antara lain radiasi CMB, hukum Hubble, dan ketersediaan kosmologis unsur-unsur).

[sunting] Astronomi observasional

Seperti diketahui, astronomi memerlukan informasi tentang benda-benda langit, dan sumber informasi yang paling utama sejauh ini adalah radiasi elektromagnetik, atau lebih spesifiknya, cahaya tampak.[34] Astronomi observasional bisa dibagi lagi menurut daerah-daerah spektrum elektromagnetik yang diamati: sebagian dari spektrum tersebut bisa diteliti melalui permukaan Bumi, sementara bagian lain hanya bisa dijangkau dari ketinggian tertentu atau bahkan hanya dari ruang angkasa. Keterangan lebih lengkap tentang pembagian-pembagian ini bisa dilihat di bawah:

[sunting] Astronomi radio

Observatorium Very Large Array (VLA) di New Mexico, AS: contoh teleskop radio
Astronomi observasional jenis ini mengamati radiasi dengan panjang gelombang yang lebih dari satu milimeter (perkiraan).[35] Berbeda dengan jenis-jenis lainnya, astronomi observasional tipe radio mengamati gelombang-gelombang yang bisa diperlakukan selayaknya gelombang, bukan foton-foton yang diskrit. Dengan demikian pengukuran fase dan amplitudonya relatif lebih gampang apabila dibandingkan dengan gelombang yang lebih pendek.[35]
Gelombang radio bisa dihasilkan oleh benda-benda astronomis melalui pancaran termal, namun sebagian besar pancaran radio yang diamati dari Bumi adalah berupa radiasi sinkrotron, yang diproduksi ketika elektron-elektron berkisar di sekeliling medan magnet.[35] Sejumlah garis spektrum yang dihasilkan dari gas antarbintang (misalnya garis spektrum hidrogen pada 21 cm) juga dapat diamati pada panjang gelombang radio.[7][35]
Beberapa contoh benda-benda yang bisa diamati oleh astronomi radio: supernova, gas antarbintang, pulsar, dan inti galaksi aktif (AGN - active galactive nucleus).[7][35]

[sunting] Astronomi inframerah

Astronomi inframerah melibatkan pendeteksian beserta analisis atas radiasi inframerah (radiasi di mana panjang gelombangnya melebihi cahaya merah). Sebagian besar radiasi jenis ini diserap oleh atmosfer Bumi, kecuali yang panjang gelombangnya tidak berbeda terlampau jauh dengan cahaya merah yang tampak. Oleh sebab itu, observatorium yang hendak mengamati radiasi inframerah harus dibangun di tempat-tempat yang tinggi dan tidak lembap, atau malah di ruang angkasa.
Spektrum ini bermanfaat untuk mengamati benda-benda yang terlalu dingin untuk memancarkan cahaya tampak, misalnya planet-planet atau cakram-cakram pengitar bintang. Apabila radiasinya memiliki gelombang yang cenderung lebih panjang, ia dapat pula membantu para astronom mengamati bintang-bintang muda pada awan-awan molekul dan inti-inti galaksi — sebab radiasi seperti itu mampu menembus debu-debu yang menutupi dan mengaburkan pengamatan astronomis.[36] Astronomi inframerah juga bisa dimanfaatkan untuk mempelajari struktur kimia benda-benda angkasa, karena beberapa molekul memiliki pancaran yang kuat pada panjang gelombang ini. Salah satu kegunaannya yaitu mendeteksi keberadaan air pada komet-komet.[37]

[sunting] Astronomi optikal

Teleskop Subaru (kiri) dan Observatorium Keck (tengah) di Mauna Kea, keduanya contoh observatorium yang bisa mengamati baik cahaya tampak atau cahaya hampir-inframerah. Di kanan adalah Fasilitas Teleskop Inframerah NASA, yang hanya beroperasi pada panjang gelombang hampir-inframerah.
Dikenal juga sebagai astronomi cahaya tampak, astronomi optikal mengamati radiasi elektromagnetik yang tampak oleh mata telanjang manusia. Oleh sebab itu, ini merupakan cabang yang paling tua, karena tidak memerlukan peralatan.[38] Mulai dari penghujung abad ke-19 sampai kira-kira seabad setelahnya, citra-citra astronomi optikal memakai teknik fotografis, namun sebelum itu mereka harus digambar menggunakan tangan. Dewasa ini detektor-detektor digitallah yang dipergunakan, terutama yang memakai CCD (charge-coupled devices, peranti tergandeng-muatan).
Cahaya tampak sebagaimana diketahui memiliki panjang dari 4.000 Å sampai 7.000 Å (400-700 nm).[38] Namun demikian, alat-alat pengamatan yang dipakai untuk mengamati panjang gelombang demikian dipakai pula untuk mengamati gelombang hampir-ultraungu dan hampir-inframerah.

[sunting] Astronomi ultraungu

Ultraungu yaitu radiasi elektromagnetik dengan panjang gelombang lebih kurang 100 sampai 3.200 Å (10-320 nm).[35] Cahaya dengan panjang seperti ini diserap oleh atmosfer Bumi, sehingga untuk mengamatinya harus dilakukan dari lapisan atmosfer bagian atas, atau dari luar atmosfer (ruang angkasa). Astronomi jenis ini cocok untuk mempelajari radiasi termal dan garis-garis spektrum pancaran dari bintang-bintang biru yang bersuhu sangat tinggi (klasifikasi OB), sebab bintang-bintang seperti itu sangat cemerlang radiasi ultraungunya — penelitian seperti ini sering dilakukan dan mencakup bintang-bintang yang berada di galaksi-galaksi lain. Selain bintang-bintang OB, benda-benda langit yang kerap diamati melalui astronomi cabang ini antara lain nebula-nebula planet, sisa-sisa supernova, atau inti-inti galaksi aktif. Diperlukan penyetelan yang berbeda untuk keperluan seperti demikian sebab cahayanya mudah tertelan oleh debu-debu antarbintang.[35]

[sunting] Astronomi sinar-X

Benda-benda bisa memancarkan cahaya berpanjang gelombang sinar-X melalui pancaran sinkrotron (berasal dari elektron-elektron yang berkisar di sekeliling medan magnet) atau melalui pancaran termal gas pekat dan gas encer pada 107 K.[35] Sinar-X juga diserap oleh atmosfer, sehingga pengamatan harus dilakukan dari atas balon, roket, atau satelit penelitian. Sumber-sumber sinar-X antara lain bintang biner sinar-X (X-ray binary), pulsar, sisa-sisa supernova, galaksi elips, gugusan galaksi, serta inti galaksi aktif.[35]

[sunting] Astronomi sinar-gamma

Astronomi sinar-gamma mempelajari benda-benda astronomi pada panjang gelombang paling pendek (sinar-gamma). Sinar-gamma bisa diamati secara langsung melalui satelit-satelit seperti Observatorium Sinar-Gamma Compton (CGRO), atau dengan jenis teleskop khusus yang disebut teleskop Cherenkov (IACT).[35] Teleskop jenis itu sebetulnya tidak mendeteksi sinar-gamma, tapi mampu mendeteksi percikan cahaya tampak yang dihasilkan dari proses penyerapan sinar-gamma oleh atmosfer.[39]
Kebanyakan sumber sinar-gamma hanyalah berupa ledakan sinar-gamma, yang hanya menghasilkan sinar tersebut dalam hitungan milisekon sampai beberapa puluh detik saja. Sumber yang permanen dan tidak sementara hanya sekitar 10% dari total jumlah sumber, misalnya sinar-gamma dari pulsar, bintang neutron, atau inti galaksi aktif dan kandidat-kandidat lubang hitam.[35]

[sunting] Cabang-cabang yang tidak berdasarkan panjang gelombang

Sejumlah fenomena jarak jauh lain yang berbentuk selain radiasi elektromagnetik dapat diamati dari Bumi. Ada cabang bernama astronomi neutrino, di mana para astronom menggunakan fasilitas-fasilitas bawah tanah (misalnya SAGE, GALLEX, atau Kamioka II/III) untuk mendeteksi neutrino, sebentuk partikel dasar yang jamaknya berasal dari Matahari atau ledakan-ledakan supernova.[35] Ketika sinar-sinar kosmik memasuki atmosfer Bumi, partikel-partikel berenergi tinggi yang menyusunnya akan meluruh atau terserap, dan partikel-partikel hasil peluruhan ini bisa dideteksi di observatorium.[40] Di masa yang akan datang, diharapkan akan ada detektor neutrino yang peka terhadap partikel-partikel yang lahir dari benturan sinar-sinar kosmik dan atmosfer.[35]
Terdapat pula cabang baru yang menggunakan detektor-detektor gelombang gravitasional untuk mengumpulkan data tentang benda-benda rapat: astronomi gelombang gravitasional. Observatorium-observatorium untuk bidang ini sudah mulai dibangun, contohnya observatorium LIGO di Louisiana, AS. Tetapi astronomi seperti ini sulit, sebab gelombang gravitasional amat sukar untuk dideteksi.[41]
Ahli-ahli astronomi planet juga banyak yang mengamati fenomena-fenomena angkasa secara langsung, yaitu melalui wahana-wahana antariksa serta misi-misi pengumpulan sampel. Beberapa hanya bekerja dengan sensor jarak jauh untuk mengumpulkan data, tapi beberapa lainnya melibatkan pendaratan —dengan kendaraan antariksa yang mampu bereksperimen di atas permukaan. Metode-metode lain misalnya detektor material terbenam atau melakukan eksperimen langsung terhadap sampel yang dibawa ke Bumi sebelumnya.

[sunting] Astrometri dan mekanika benda langit

Pengukuran letak benda-benda langit, seperti disebutkan, adalah salah satu cabang astronomi (dan bahkan sains) yang paling tua. Kegiatan-kegiatan seperti pelayaran atau penyusunan kalender memang sangat membutuhkan pengetahuan yang akurat mengenai letak Matahari, Bulan, planet-planet, serta bintang-bintang di langit.
Dari proses pengukuran seperti ini dihasilkan pemahaman yang baik sekali tentang usikan gravitasi dan pada akhirnya astronom-astronom dapat menentukan letak benda-benda langit dengan tepat pada masa lalu dan masa depan — cabang astronomi yang mendalami bidang ini dikenal sebagai mekanika benda langit. Dewasa ini penjejakan atas benda-benda yang dekat dengan Bumi juga memungkinkan prediksi-prediksi akan pertemuan dekat, atau bahkan benturan.[42]
Kemudian terdapat pengukuran paralaks bintang. Pengukuran ini sangat penting karena memberi nilai basis dalam metode tangga jarak kosmik; melalui metode ini ukuran dan skala alam semesta bisa diketahui. Pengukuran paralaks bintang yang relatif lebih dekat juga bisa dipakai sebagai basis absolut untuk ciri-ciri bintang yang lebih jauh, sebab ciri-ciri di antara mereka dapat dibandingkan. Kinematika mereka lalu bisa kita susun lewat pengukuran kecepatan radial serta gerak diri masing-masing. Hasil-hasil astrometri dapat pula dimanfaatkan untuk pengukuran materi gelap di dalam galaksi.[43]
Selama dekade 1990-an, teknik pengukuran goyangan bintang dalam astrometri digunakan untuk mendeteksi keberadaan planet-planet luar surya yang mengelilingi bintang-bintang di dekat Matahari kita.[44]

[sunting] Astronomi teoretis

Terdapat banyak jenis-jenis metode dan peralatan yang bisa dimanfaatkan oleh seorang astronom teoretis, antara lain model-model analitik (misalnya politrop untuk memperkirakan perilaku sebuah bintang) dan simulasi-simulasi numerik komputasional; masing-masing dengan keunggulannya sendiri. Model-model analitik umumnya lebih baik apabila peneliti hendak mengetahui pokok-pokok persoalan dan mengamati apa yang terjadi secara garis besar; model-model numerik bisa mengungkap keberadaan fenomena-fenomena serta efek-efek yang tidak mudah terlihat.[45][46]
Para teoris berupaya untuk membuat model-model teoretis dan menyimpulkan akibat-akibat yang dapat diamati dari model-model tersebut. Ini akan membantu para pengamat untuk mengetahui data apa yang harus dicari untuk membantah suatu model, atau memutuskan mana yang benar dari model-model alternatif yang bertentangan. Para teoris juga akan mencoba menyusun model baru atau memperbaiki model yang sudah ada apabila ada data-data baru yang masuk. Apabila terjadi pertentangan/inkonsistensi, kecenderungannya adalah untuk membuat modifikasi minimal pada model yang bersangkutan untuk mengakomodir data yang sudah didapat. Kalau pertentangannya terlalu banyak, modelnya bisa dibuang dan tidak digunakan lagi.
Topik-topik yang dipelajari oleh astronom-astronom teoretis antara lain: dinamika dan evolusi bintang-bintang; formasi galaksi; struktur skala besar materi di alam semesta; asal-usul sinar kosmik; relativitas umum; dan kosmologi fisik (termasuk kosmologi dawai dan fisika astropartikel). Relativitas astrofisika dipakai untuk mengukur ciri-ciri struktur skala besar, di mana ada peran yang besar dari gaya gravitasi; juga sebagai dasar dari fisika lubang hitam dan penelitian gelombang gravitasional.
Beberapa model/teori yang sudah diterima dan dipelajari luas yaitu teori Dentuman Besar, inflasi kosmik, materi gelap, dan teori-teori fisika fundamental. Kelompok model dan teori ini sudah diintegrasikan dalam model Lambda-CDM.
Beberapa contoh proses:
Proses fisik Alat eksperimen Model teoretis Yang dijelaskan/diprediksi
Gravitasi Teleskop radio Efek Nordtvedt (sistem gravitasi yang mandiri) Lahirnya sebuah tata bintang
Fusi nuklir Spektroskopi Evolusi bintang Bagaimana bintang berpijar; bagaimana logam terbentuk (nukleosintesis).
Dentuman Besar (Big Bang) Teleskop luar angkasa Hubble, COBE Alam semesta yang mengembang Usia alam semesta
Fluktuasi kuantum Inflasi kosmik Masalah kerataan alam semesta (flatness problem)
Keruntuhan gravitasi Astronomi sinar-X Relativitas umum Sekumpulan lubang hitam di pusat Galaksi Andromeda.
Siklus CNO pada bintang-bintang
Wacana yang tengah hangat dalam astronomi pada beberapa tahun terakhir adalah materi gelap dan energi gelap — penemuan dan kontroversi mengenai topik-topik ini bermula dari penelitian atas galaksi-galaksi.[47]

[sunting] Cabang-cabang spesifik

[sunting] Astronomi surya

Citra ultraungu dari fotosfer aktif Matahari, hasil tangkapan teleskop TRACE oleh NASA.
Matahari adalah bintang yang terdekat dari Bumi pada sekitar 8 menit cahaya, dan yang paling sering diteliti; ia merupakan bintang katai pada deret utama dengan klasifikasi G2 V dan usia sekitar 4,6 milyar tahun. Walau tidak sampai tingkat bintang variabel, Matahari mengalami sedikit perubahan cahaya melalui aktivitas yang dikenal sebagai siklus bintik Matahari — fluktuasi pada angka bintik-bintik Matahari selama sebelas tahun. Bintik Matahari ialah daerah dengan suhu yang lebih rendah dan aktivitas magnetis yang hebat.[48]
Luminositas Matahari terus bertambah kuat secara tetap sepanjang hidupnya, dan sejak pertama kali menjadi bintang deret utama sudah bertambah sebanyak 40%. Matahari juga telah tercatat melakukan perubahan periodik dalam luminositas, sesuatu yang bisa menyebabkan akibat-akibat yang signifikan atas kehidupan di atas Bumi.[49] Misalnya periode minimum Maunder, yang sampai menyebabkan fenomena zaman es kecil pada Abad Pertengahan.[50]
Permukaan luar Matahari yang bisa kita lihat disebut fotosfer. Di atasnya ada lapisan tipis yang biasanya tidak terlihat karena terangnya fotosfer, yaitu kromosfer. Di atasnya lagi ada lapisan transisi di mana suhu bisa naik secara cepat, dan di atasnya terdapatlah korona yang sangat panas.
Di tengah-tengah Matahari ialah daerah inti; ada tingkat suhu dan tekanan yang cukup di sini sehingga fusi nuklir dapat terjadi. Di atasnya terdapat zona radiatif; di sini plasma akan menghantarkan panas melalui proses radiasi. Di atas zona radiatif adalah zona konvektif; materi gas di zona ini akan menghantarkan energi sebagian besar lewat pergerakan materi gas itu sendiri. Zona inilah yang dipercaya sebagai sumber aktivitas magnetis penghasil bintik-bintik Matahari.[48]
Terdapat angin surya berupa partikel-partikel plasma yang bertiup keluar dari Matahari secara terus-menerus sampai mencapai titik heliopause. Angin ini bertemu dengan magnetosfer Bumi dan membentuk sabuk-sabuk radiasi Van Allen dan — di mana garis-garis medan magnet Bumi turun menujur atmosfer — menghasilkan aurora.[51]

[sunting] Ilmu keplanetan

Cabang astronomi ini meneliti susunan planet, bulan, planet katai, komet, asteroid, serta benda-benda langit lain yang mengelilingi bintang, terutama Matahari, walau ilmu ini meliputi juga planet-planet luar surya. Tata Surya kita sendiri sudah dipelajari secara mendalam — pertama-tama melalui teleskop dan kemudian menggunakan wahana-wahana antariksa — sehingga pemahaman sekarang mengenai formasi dan evolusi sistem keplanetan ini sudah sangat baik, walaupun masih ada penemuan-penemuan baru yang terjadi.[52]
Titik hitam di atas ialah sebuah setan debu (dust devil) yang tengah memanjat suatu kawah di Mars. Ini serupa dengan tornado yang berpilin dan berpindah-pindah, menghasilkan "ekor" yang panjang dan gelap. Citra oleh NASA.
Tata Surya dibagi menjadi beberapa kelompok: planet-planet bagian dalam, sabuk asteroid, dan planet-planet bagian luar. Planet-planet bagian dalam adalah planet-planet bersifat kebumian yaitu Merkurius, Venus, Bumi dan Mars. Planet-planet bagian luar adalah raksasa-raksasa gas Tata Surya yaitu Yupiter, Saturnus, Uranus, dan Neptunus.[53] Apabila kita pergi lebih jauh lagi, maka akan ditemukan benda-benda trans-Neptunus: pertama sabuk Kuiper dan akhirnya awan Oort yang bisa membentang sampai satu tahun cahaya.
Terbentuknya planet-planet bermula pada sebuah cakram protoplanet yang mengitari Matahari pada periode-periode awalnya. Dari cakram ini terwujudlah gumpalan-gumpalan materi melalui proses yang melibatkan tarikan gravitasi, benturan, dan akresi; gumpalan-gumpalan ini kemudian lama-kelamaan menjadi kumpulan protoplanet. Karena tekanan radiasi dari angin surya terus mendorong materi-materi yang belum menggumpal, hanya planet-planet yang massanya cukup besar yang mampu mempertahankan atmosfer berbentuk gas. Planet-planet muda ini terus menyapu dan memuntahkan materi-materi yang tersisa, menghasilkan sebuah periode penghancuran yang hebat. Sisa-sisa periode ini bisa dilihat melalui banyaknya kawah-kawah tabrakan di permukaan Bulan. Adapun dalam jangka waktu ini sebagian dari protoplanet-protoplanet yang ada mungkin bertabrakan satu sama lain; kemungkinan besar tabrakan seperti itulah yang melahirkan Bulan kita.[54]
Ketika suatu planet mencapai massa tertentu, materi-materi dengan massa jenis yang berlainan mulai saling memisahkan diri dalam proses yang disebut diferensiasi planet. Proses demikian bisa menghasilkan inti yang berbatu-batu atau terdiri dari materi-materi logam, diliputi oleh lapisan mantel dan lalu permukaan luar. Inti planet ini bisa terbagi menjadi daerah-daerah yang padat dan cair, dan beberapa mampu menghasilkan medan magnet mereka sendiri, sehingga planet dapat terlindungi dari angin surya.[55]
Panas di bagian dalam sebuah planet atau bulan datang dari benturan yang dihasilkan sendiri oleh planet/bulan tersebut, atau oleh materi-materi radioaktif (misalnya uranium, torium, atau 26Al), atau pemanasan pasang surut. Beberapa planet dan bulan berhasil mengumpulkan cukup panas untuk menjalankan proses-proses geologis seperti vulkanisme dan aktivitas-aktivitas tektonik. Apabila planet/bulan tersebut juga memiliki atmosfer, maka erosi pada permukaan (melalui angin atau air) juga dapat terjadi. Planet/bulan yang lebih kecil dan tanpa pemanasan pasang surut akan menjadi dingin lebih cepat dan kegiatan-kegiatan geologisnya akan berakhir, terkecuali pembentukan kawah-kawah tabrakan.[56]

[sunting] Astronomi bintang

Nebula Semut. Gas yang dimuntahkan dari bintang sekarat di tengahnya tidak biasa karena membentuk pola yang simetris, bukan semrawut seperti ledakan pada umumnya.
Untuk memahami alam semesta, penelitian atas bintang-bintang dan bagaimana mereka berevolusi sangatlah fundamental. Astrofisika yang berkenaan dengan bintang sendiri bisa diketahui baik lewat segi pengamatan maupun segi teoretis, serta juga melalui simulasi komputer.[57]
Bintang terbentuk pada awan-awan molekul raksasa, yaitu daerah-daerah yang padat akan debu dan gas. Ketika kehilangan kestabilannya, serpihan-serpihan dari awan-awan ini bisa runtuh di bawah gaya gravitasi dan membentuk protobintang. Apabila bagian intinya mencapai kepadatan dan suhu tertentu, fusi nuklir akan dipicu dan akan terbentuklah sebuah bintang deret utama.[58]
Nyaris semua unsur yang lebih berat dari hidrogen dan helium merupakan hasil dari proses yang terjadi di dalam inti bintang-bintang.[57]
Ciri-ciri yang akan dimiliki oleh suatu bintang secara garis besar ditentukan oleh massa awalnya: semakin besar massanya, maka semakin tinggi pula luminositasnya, dan semakin cepat pula ia akan menghabiskan bahan bakar hidrogen pada inti. Lambat laun, bahan bakar hidrogen ini akan diubah menjadi helium, dan bintang yang bersangkutan akan mulai berevolusi. Untuk melakukan fusi helium, diperlukan suhu inti yang lebih tinggi, oleh sebab itu intinya akan semakin padat dan ukuran bintang pun berlipat ganda — bintang ini telah menjadi sebuah raksasa merah. Fase raksasa merah ini relatif singkat, sampai bahan bakar heliumnya juga sudah habis terpakai. Kalau bintang tersebut memiliki massa yang sangat besar, maka akan dimulai fase-fase evolusi di mana ia semakin mengecil secara bertahap, sebab terpaksa melakukan fusi nuklir terhadap unsur-unsur yang lebih berat.[59]
Adapun nasib akhir sebuah bintang bergantung pula pada massa. Jika massanya lebih dari sekitar delapan kali lipat Matahari kita, maka gravitasi intinya akan runtuh dan menghasilkan sebuah supernova;[60] jika tidak, akan menjadi nebula planet, dan terus berevolusi menjadi sebuah katai putih.[61] Yang tersisa setelah supernova meletus adalah sebuah bintang neutron yang sangat padat, atau, apabila materi sisanya mencapai tiga kali lipat massa Matahari, lubang hitam.[62] Bintang-bintang biner yang saling berdekatan evolusinya bisa lebih rumit lagi, misalnya, bisa terjadi pemindahan massa ke arah bintang rekannya yang dapat menyebabkan supernova.[63]
Nebula-nebula planet dan supernova-supernova diperlukan untuk proses distribusi logam di medium antarbintang; kalau tidak demikian, seluruh bintang-bintang baru (dan juga sistem-sistem planet mereka) hanya akan tersusun dari hidrogen dan helium saja.[64]

[sunting] Astronomi galaksi

Struktur lengan-lengan spiral Bima Sakti yang sudah teramati.
Tata Surya kita beredar di dalam Bima Sakti, sebuah galaksi spiral berpalang di Grup Lokal. Ia merupakan salah satu yang paling menonjol di kumpulan galaksi tersebut. Bima Sakti merotasi materi-materi gas, debu, bintang, dan benda-benda lain, semuanya berkumpul akibat tarikan gaya gravitasi bersama. Bumi sendiri terletak pada sebuah lengan galaksi berdebu yang ada di bagian luar, sehingga banyak daerah-daerah Bima Sakti yang tidak terlihat.
Pada pusat galaksi ialah bagian inti, semacam tonjolan berbentuk seperti batang; diyakini bahwa terdapat sebuah lubang hitam supermasif di bagian pusat ini. Bagian ini dikelilingi oleh empat lengan utama yang melingkar dari tengah menuju arah luar, dan isinya kaya akan fenomena-fenomena pembentukan bintang, sehingga memuat banyak bintang-bintang muda (metalisitas populasi I). Cakram ini lalu diliputi oleh cincin galaksi yang berisi bintang-bintang yang lebih tua (metalisitas populasi II) dan juga gugusan-gugusan bintang berbentuk bola (globular), yaitu semacam kumpulan-kumpulan bintang yang relatif lebih padat.[65]
Daerah di antara bintang-bintang disebut medium antarbintang, yaitu daerah dengan kandungan materi yang jarang — bagian-bagiannya yang relatif terpadat adalah awan-awan molekul berisi hidrogen dan unsur lainnya, tempat di mana banyak bintang baru akan lahir. Awalnya akan terbentuk sebuah inti pra-bintang atau nebula gelap yang merapat dan kemudian runtuh (dalam volume yang ditentukan oleh panjang Jeans) untuk membangun protobintang.[58]
Ketika sudah banyak bintang besar yang muncul, mereka akan mengubah awan molekul menjadi awan daerah H II, yaitu awan dengan gas berpijar dan plasma. Pada akhirnya angin serta ledakan supernova yang berasal dari bintang-bintang ini akan memencarkan awan yang tersisa, biasanya menghasilkan sebuah (atau lebih dari satu) gugusan bintang terbuka yang baru. Gugusan-gugusan ini lambat laun berpendar, dan bintang-bintangnya bergabung dengan Bima Sakti.[66]
Sejumlah penelitian kinematika berkenaan dengan materi-materi di Bima Sakti (dan galaksi lainnya) menunjukkan bahwa materi-materi yang tampak massanya kurang dari massa seluruh galaksi. Ini menandakan terdapat apa yang disebut materi gelap yang bertanggung jawab atas sebagian besar massa keseluruhan, tapi banyak hal yang belum diketahui mengenai materi misterius ini.[67]

[sunting] Astronomi ekstragalaksi

Citra di atas menampilkan beberapa benda biru berbentuk lingkaran; ini adalah gambar-gambar dari galaksi yang sama, tergandakan oleh efek lensa gravitasional yang disebabkan oleh gugusan galaksi-galaksi kuning pada bagian tengah foto. Efek lensa itu dihasilkan medan gravitasi gugusan dan membelokkan cahaya sehingga gambar salah satu benda yang lebih jauh diperbesar dan terdistorsi.
Penelitian benda-benda yang berada di luar galaksi kita — astronomi ekstragalaksi — merupakan cabang yang mempelajari formasi dan evolusi galaksi-galaksi, morfologi dan klasifikasi mereka, serta pengamatan atas galaksi-galaksi aktif beserta grup-grup dan gugusan-gugusan galaksi. Ini, terutama yang disebutkan belakangan, penting untuk memahami struktur alam semesta dalam skala besar.
Kebanyakan galaksi akan membentuk wujud-wujud tertentu, sehingga pengklasifikasiannya bisa disusun berdasarkan wujud-wujud tersebut. Biasanya, mereka dibagi-bagi menjadi galaksi-galaksi spiral, elips, dan tak beraturan.[68]
Persis seperti namanya, galaksi elips berbentuk seperti elips. Bintang-bintang berputar pata garis edarnya secara acak tanpa menuju arah yang jelas. Galaksi-galaksi seperti ini kandungan debu antarbintangnya sangat sedikit atau malah tidak ada; daerah penghasil bintangnya tidak banyak; dan rata-rata penghuninya bintang-bintang yang sudah tua. Biasanya galaksi elips ditemukan pada bagian inti gugusan galaksi, dan bisa terlahir melalui peleburan galaksi-galaksi besar.
Galaksi spiral membentuk cakram gepeng yang berotasi, biasanya dengan tonjolan atau batangan pada bagian tengah dan lengan-lengan spiral cemerlang yang timbul dari bagian tersebut. Lengan-lengan ini ialah lapangan berdebu tempat lahirnya bintang-bintang baru, dan penghuninya adalah bintang-bintang muda yang bermassa besar dan berpijar biru. Umumnya, galaksi spiral akan dikelilingi oleh cincin yang tersusun atas bintang-bintang yang lebih tua. Contoh galaksi semacam ini adalah Bima Sakti dan Andromeda.
Galaksi-galaksi tak beraturan bentuknya kacau dan tidak menyerupai bangun tertentu seperti spiral atau elips. Kira-kira seperempat dari galaksi-galaksi tergolong tak beraturan, barangkali disebabkan oleh interaksi gravitasi.
Sebuah galaksi dikatakan aktif apabila memancarkan jumlah energi yang signifikan dari sumber selain bintang-bintang, debu, atau gas; juga, apabila sumber tenaganya berasal dari daerah padat di sekitar inti — kemungkinan sebuah lubang hitam supermasif yang memancarkan radiasi benda-benda yang ia telan.
Apabila sebuah galaksi aktif memiliki radiasi spektrum radio yang sangat terang serta memancarkan jalaran gas dalam jumlah besar, maka galaksi tersebut tergolong galaksi radio. Contoh galaksi seperti ini adalah galaksi-galaksi Seyfert, kuasar, dan blazar. Kuasar sekarang diyakini sebagai benda yang paling dapat dipastikan sangat cemerlang; tidak pernah ditemukan spesimen yang redup.[69]
Struktur skala besar dari alam semesta sekarang digambarkan sebagai kumpulan dari grup-grup dan gugusan-gugusan galaksi. Struktur ini diklasifikasi lagi dalam sebuah hierarki pengelompokan; yang terbesar adalah maha-gugusan (supercluster). Kemudian kelompok-kelompok ini disusun menjadi filamen-filamen dan dinding-dinding galaksi, dengan kehampaan di antara mereka.[70]

[sunting] Kosmologi

Kosmologi, berasal dari bahasa Yunani kosmos (κόσμος, "dunia") dan akhiran -logia dari logos (λόγος, "pembelajaran") dapat dipahami sebagai upaya meneliti alam semesta secara keseluruhan.
Pengamatan atas struktur skala besar alam semesta, yaitu cabang yang dikenal sebagai kosmologi fisik, telah menyumbangkan pemahaman yang mendalam tentang formasi dan evolusi jagat raya. Salah satu teori yang paling penting (dan sudah diterima luas) adalah teori Dentuman Besar, yang menyatakan bahwa dunia bermula pada satu titik dan mengembang selama 13,7 milyar tahun sampai ke masa sekarang.[71] Gagasan ini bisa dilacak kembali pada penemuan radiasi CMB pada tahun 1965.[71]
Selama proses pengembangan ini, alam telah mengalami beberapa tingkat evolusi. Pada awalnya, diduga bahwa terdapat inflasi kosmik yang sangat cepat, mengakibatkan homogenisasi pada kondisi-kondisi awal. Setelah itu melalui nukleosintesis dihasilkan ketersediaan unsur-unsur untuk periode awal alam semesta.[71] (Lihat juga nukleokosmokronologi.)
Ketika atom-atom pertama bermunculan, antariksa menjadi transparan terhadap radiasi, melepaskan energi yang sekarang dikenal sebagai radiasi CMB. Alam semesta yang tengah mengembang pun memasuki Zaman Kegelapan, sebab tidak ada sumber daya bintang yang bisa memancarkan cahaya.[72]
Susunan materi yang hierarkis mulai terbentuk lewat variasi-variasi kecil pada massa jenis. Materi lalu terhimpun pada daerah-daerah dengan massa jenis yang paling tinggi, melahirkan awan-awan gas dan bintang-bintang yang paling purba (metalisitas III). Bintang-bintang besar ini memicu proses reionisasi dan dipercaya telah menciptakan banyak unsur-unsur berat pada alam semesta dini; unsur-unsur ini cenderung meluruh kembali menjadi unsur-unsur yang lebih ringan, memperpanjang siklus.[73]
Pengumpulan yang dipicu oleh gravitasi mengakibatkan materi membentuk filamen-filamen dan menyisakan ruang-ruang hampa di antaranya. Lambat laun, gas dan debu melebur dan membentuk galaksi-galaksi primitif. Lama-kelamaan semakin banyak materi yang ditarik, dan tersusun menjadi grup dan gugusan galaksi. Pada akhirnya, maha-gugusan yang lebih besar pun terwujud.[74]
Benda-benda lain yang memegang peranan penting dalam struktur alam semesta adalah materi gelap dan energi gelap. Benda-benda inilah yang ternyata merupakan komponen utama dunia kita, di mana massa mereka mencapai 96% dari massa keseluruhan alam semesta. Oleh sebab itu, upaya-upaya terus dibuat untuk meneliti dan memahami segi fisika benda-benda ini.[75]

[sunting] Penelitian-penelitian interdisipliner

Astronomi dan astrofisika telah mengambangkan hubungan yang kuat dengan cabang-cabang ilmu pengetahuan lainnya. Misalnya arkeoastronomi, yang mempelajari astronomi kuno atau tradisional dalam konteks budaya masing-masing mempergunakan bukti-bukti arkeologis dan antropologis. Atau astrobiologi, kali ini mempelajari kelahiran dan perkembangan sistem-sistem biologis di alam semesta; terutama sekali pada topik kehidupan di planet lain.
Ada juga cabang yang meneliti zat-zat kimia yang ditemukan di luar angkasa; bagaimana mereka terwujud, berperilaku, dan terhancurkan. Ini dinamakan astrokimia. Zat-zat yang hendak dipelajari biasanya ditemukan pada awan molekul, walau ada juga yang terdapat di bintang bersuhu rendah, katai coklat, atau planet. Lalu kosmokimia, ilmu serupa yang lebih mengarah ke penelitian unsur-unsur dan variasi-variasi rasio isotop pada Tata Surya. Ilmu-ilmu ini bisa menggambarkan persinggungan dari ilmu-ilmu astronomi dan kimia. Bahkan sekarang ada astronomi forensik, di mana metode-metode astronomi dipakai untuk memecahkan masalah-masalah hukum dan sejarah.

[sunting] Astronomi amatir

Astronom amatir bisa membangun peralatan mereka sendiri dan menyelenggarakan pesta-pesta dan pertemuan astronomi, contohnya komunitas Stellafane.
Sebagaimana disebutkan, astronomi ialah salah satu dari sedikit cabang ilmu di mana tenaga amatir dapat berkontribusi banyak.[76] Secara keseluruhan, astronom-astronom amatir mengamati berbagai benda dan fenomena angkasa, terkadang bahkan dengan peralatan yang mereka buat sendiri. Yang jamak diamati yaitu Bulan, planet, bintang, komet, hujan meteor, dan benda-benda langit dalam seperti gugusan bintang, galaksi, dan nebula. Salah satu cabang astronomi amatir adalah astrofotografi amatir, yang melibatkan mengambilan foto-foto langit malam. Banyak yang memilih menjadi astrofotografer yang berspesialis dalam obyek atau peristiwa tertentu.[77][78]
Kebanyakan astronom amatir bekerja dalam astronomi optikal, walau sebagian kecil ada juga yang mencoba bereksperimen dengan panjang gelombang di luar cahaya tampak, misalnya dengan penyaring inframerah pada teleskop biasa, atau penggunaan teleskop radio. Pelopor radio astronomi amatir adalah Karl Jansky, yang memulai kegiatan ini pada dekade 1930-an. Amatir jenis seperti Jansky ini memakai teleskop buatan sendiri atau teleskop radio profesional yang sekarang sudah boleh diakses oleh amatir seperti halnya Teleskop Satu Mil (One-Mile Telescope).[79][80]
Sumbangsih astronom amatir tidak sepele, sebab banyak hal — seperti pengkuran okultasi guna mempertajam catatan garis edar planet-planet kecil — bergantung pada pekerjaan astronomi amatir. Para amatir dapat pula menemukan komet atau melakukan penelitian rutin atas bintang-bintang variabel. Seiring dengan perkembangan teknologi digital, astrofotografi amatir juga semakin efektif dan semakin giat memberikan sumbangan ilmu.[81][82][83]

[sunting] Daftar persoalan astronomi yang belum terpecahkan

Meskipun sebagai ilmu pengetahuan astronomi telah mengalami kemajuan-kemajuan yang sangat pesat dan membuat terobosan-terobosan yang sangat besar dalam upaya memahami alam semesta dan segala isinya, masih ada beberapa pertanyaan penting yang belum bisa terjawab. Untuk memecahkan permasalahan seperti ini, boleh jadi diperlukan pembangunan peralatan-peralatan baru baik di permukaan Bumi maupun di antariksa. Selain itu, mungkin juga diperlukan perkembangan baru dalam fisika teoretis dan eksperimental.
  • Apakah asal-usul spektrum massa bintang? Maksudnya, mengapa astronom terus mengamati persebaran massa yang sama — yaitu, fungsi massa awal yang sama — walaupun keadaan awal terwujudnya bintang-bintang berbeda-beda?[84] Diperlukan pemahaman yang lebih dalam akan pembentukan bintang dan planet.
  • Adakah wujud kehidupan lain di alam semesta? Adakah wujud kehidupan cerdas lain di alam semesta? Kalau ada, apa jawaban dari paradoks Fermi? Apabila ada kehidupan lain di luar Bumi, implikasinya, baik ilmiah maupun filosofis, sangat penting.[85][86] Apakah Tata Surya kita termasuk normal ataukah ternyata tidak biasa?
  • Apa yang menyebabkan terbentuknya alam semesta? Apakah premis yang melandasi hipotesis "alam semesta yang tertala dengan baik" (fine-tuned universe) tepat? Apabila tepat, apakah ada semacam seleksi alam dalam skala kosmologis? Apa sebenarnya yang menyebabkan inflasi kosmik dini, sehingga alam menjadi homogen? Kenapa terdapat asimetri barion di alam semesta?
  • Apa hakikat sebenarnya dari materi gelap dan energi gelap? Mereka telah mendominasi proses perkembangan dan, pada akhirnya, nasib dari jagat raya, tapi sifat-sifat mendasar mereka tetap belum dipahami.[87] Apa yang akan terjadi di penghujung waktu?[88]
  • Bagaimana galaksi-galaksi pertama terbentuk? Bagaimana lubang-lubang hitam supermasif terbentuk?
  • Apa yang menghasilkan sinar kosmik berenergi ultra-tinggi?